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Abstract

While modern mathematical models of settlement bargaining in
litigation generally seek to identify perfect Bayesian Nash equilibria,
previous computational models have lacked game theoretic foundations.
This article illustrates how computational game theory can complement
analytical models. It identifies equilibria by applying linear
programming techniques to a discretized version of a cutting-edge model
of settlement bargaining. This approach makes it straightforward to
alter some assumptions in the model, including that the evidence about
which the parties receive signals is irrelevant to the merits and that the
party with a stronger case on the merits also has better information.
The computational model can also toggle easily to explore cases
involving liability rather than damages and can incorporate risk
aversion. A drawback of the computational model is that bargaining
games may have many equilibria, complicating assessments of whether
changes in equilibria associated with parameter variations are causal.

1 Introduction

The literature analyzing the effects of fee shifting confronts a daunting analytic
challenge. Settlement bargaining is a two-player asymmetric information game.
The gold standard solution to such a game is a pair of common knowledge strate-
gies that form a perfect Bayesian equilibrium. The perfection requirement, as
defined by Fudenberg and Tirole (1991) [8], specializes the general Nash [21]
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equilibrium criterion in an imperfect information game, by insisting that at no
point in the game may a player have any incentive to change the player’s strat-
egy. Each player applies Bayesian reasoning to incorporate new information,
such as signals of case quality, into estimates of trial outcomes, and the player’s
probabilistic beliefs are required to be correct given such information. Compli-
cating the challenge of crafting such equilibria, each party might decide not to
contest the litigation, one or both parties may be risk averse, players may or
may not have asymmetric information, a case may concern liability or damages,
and the loser may or may not be required to pay the winner’s fees.

Incorporating all of these considerations into a single model of settlement
bargaining has proven elusive. The settlement bargaining modeler stands before
a smorgasbord of potentially critical game features, but faces the admonition
to choose no more than a few. The result, Daughety and Reinganum (1993) [5]
observed, is a literature that “has grown in a disorganized fashion, resulting in
a multitude of models involving different informational endowments and timing
structures.” This statement remains true nearly three decades later, with the
settlement-bargaining-modeling art making unmistakable but limited progress.
The earliest models of Landes (1971) [18], Posner (1973) [24], and Gould (1973)
[9] had ignored the challenges of Bayesian inference. Later came models, such as
Bebchuk (1984) [1] and Polinsky and Rubinfeld (1998) [22], in which one party
knows the probability of liability or the amount of damages while the other
party knows only the distribution, and Daughety and Reinganum (1994) [6], in
which one party has information on liability and the other party, on damages.
The latest generation of scholarship, including Friedman and Wittman (2006)
[7], Klerman, Lee, and Liu (2018) [16], and Dari-Mattiacci and Saraceno (2020)
[4], models two-sided asymmetric information, in which each of the plaintiff
and defendant has independent private information about the same issue, for
example about the level of damages. The last of these even succeeds at the
Herculean task of incorporating fee shifting, but I will see that even it does
not escape the curse of dimensionality, as it must adopt a number of restrictive
assumptions that make it difficult to assess the generality of its conclusions.

The literature is extraordinarily clever, in both the positive and negative
senses of the word. It takes advantage of mathematical assumptions to make
otherwise intractable problems tractable. One can expect further progress from
relaxing different assumptions, but the goal of developing a single mathematical
model that allows exploration of different values of a large number of variables
may be unattainable. The literature develops critical intuitions about settlement
bargaining, including how changing fee shifting rules may augment or diminish
the effectiveness of the litigation system, and review articles, like Katz and
Sanchirico (2012) [15], informally integrate various models’ conclusions about
how fee shifting might affect trial or settlement rates. Even with such reviews,
however, it is difficult to generalize about the wisdom of fee shifting, because of
the interactivity between trial and settlement rates. If, for example, increased
ease of settlement leads to plaintiffs’ bringing and defendants’ defending more
cases, total litigation expenditures in principle could rise.

Scholars have studied settlement bargaining with other methodologies, but
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these have their own limitations. Empirical analyses are limited to studying
the rare cases in which a change in fee-shifting rules occurs, as in the exam-
ination by Hughes and Snyder (1995) [11] of a briefly-lived policy experiment
in Florida. Laboratory experiments offer another approach, with contributions
by Coursey and Stanley (1988) [3], Inglis et al. (2005) [13], Rowe and Vidmar
(1988) [26], and Main and Park (2000) [19]. It is not clear, however, whether
the artificial stakes and quick decisions in a lab produce results similar to those
of real litigation. A final methodology in the literature is computer-based sim-
ulation. Priest and Klein (1984) [25], Katz (1987) [14], Hause (1989) [10], and
Hylton (1993) [12] were pioneers in using computation, either independently or
as complements to formal models. While these articles all include innovations
building on the Landes-Gould-Posner model, they share a significant limitation:
Unlike the math models, the simulations do not seek perfect Nash equilibria.

It is, however, possible to harness computational power in the quest for per-
fect Bayesian equilibria, by turning to computational game theory. The settle-
ment bargaining literature has acknowledged the importance of game theoretic
concepts, but articles build at most relatively small game trees. Acknowledging
that litigation can be viewed as “a particular extensive-form bargaining game,”
Spier (1994, pp. 202-03) [28] sensibly worries that the results would be sen-
sitive to issues such as “the structure of the asymmetric information.” This
concern suggests that solvable game theoretic models are insufficiently rich to
encapsulate critical aspects of the litigation game. Computational game the-
ory, however, allows for the identification of equilibria in games that could not
practically be solved by hand. A subliterature focuses directly on the solution
of two-player (and sometimes n-player) general sum games. A litigation game
between plaintiff and defendant is general sum, which can be more difficult than
a zero-sum game to solve, because the players may transfer wealth not only from
defendant to plaintiff, but also from both litigants to lawyers. A useful review
of algorithms that can help solve such games is von Stengel (2002) [29].

A publicly available open source software package known as Gambit by McK-
elvey et al. (2016) [20] features a number of these algorithms. This article,
however, applies an algorithm not included in Gambit, specifically an algorithm
described in an article in Econometrica: von Stengel, van den Elzen, and Talman
(2002) [30]. This algorithm, described further below, is guaranteed to produce
exact perfect Bayesian Nash equilibria in a finite game in which the players
have perfect recall. Sometimes, these equilibria are pure, with players acting
deterministically conditional on the information that they possess, but they can
be mixed, with the players randomly choosing at certain moments of the game
between or among equally good strategies, each with some nonzero probability.
Mixed strategies need not reflect explicit randomization by players; they may
be understood as describing balanced populations of litigants who for reasons
exogenous to the model take different approaches, none better than others given
opponents’ strategies. The authors test their algorithm on games of up to 1,023
nodes. This article pushes the computational limits of the algorithm, applying
it to each of a large number of games with up to 16,111 nodes. Separate identifi-
cation of equilibria corresponding to different information and game structures
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allows assessment of the conditions in which changing fee-shifting rules may
increase or decrease the effectiveness of the litigation system, as manifested in
accuracy or trial rates, assuming the litigation game is played in equilibrium
by rational actors. This approach thus enables modeling of a richer and more
diverse litigation environment than any single prior approach.

To illustrate how this approach can complement analytic models, this Article
focuses on the model of Dari-Mattiacci and Saraceno (2020), the first article to
integrate both two-sided asymmetric information and fee-shifting. In this model,
both players know the true quality of the litigation, but the judgment depends
not only on this value, but also on the sum of signals independently received
by the parties. Part 2 describes the Dari-Mattiacci and Saraceno model, and
it identifies a number of assumptions that may be necessary for mathematical
tractability but are unrealistic or greatly narrow the model’s applicability. Part
3 then presents a discretized version of the Dari-Mattiacci and Saraceno model
that can be solved computationally. It also addresses two potential concerns:
first, that discretization might itself significantly affect equilibrium strategies,
and second, that the game might have multiple equilibria.

Part 4 provides the central results, illustrating how changing parameters and
assumptions can affect equilibria. It first reports accuracy and trial rates for
different values of litigation quality. These data are partially consistent with
the Dari-Mattiacci and Saraceno model, at least when restricted to parameter
values within the range permitted by that model. It then relaxes a number
of assumptions of their model by extending the range of permissible litigation
quality and litigation quality parameters, disentangling strength of information
from litigation quality, allowing the evidence that parties receive to be relevant
to the merits, adopting variants on the fee-shifting rules, granting the parties
an outside option not to litigate, and featuring risk-averse litigants.

A unifying theme of Dari-Mattiacci and Saraceno’s analysis is that their
model may help explain the stylized observation that the United States is a
high-cost jurisdiction in which the American rule prevails, while the English
rule prevails in relatively low-cost jurisdictions in Europe. In particular, they
find that fee-shifting improves accuracy in low-cost environments and causes
inaccuracy with high costs. The analysis here, however, is not consistent with
this pattern. The model closest to Dari-Mattiacci and Saraceno’s appears con-
sistent only with their observation about low-cost jurisdictions, and the effects
are modest. That model is not consistent with their observation about high-cost
jurisdictions. Some other models are consistent with that observation, but still
others point in the exact opposite direction.

The data provide limited support for an informal analysis of Dari-Mattiacci
and Saraceno further supporting the proposition that the American rule may
make particular sense in the United States, a common law jurisdiction, com-
pared to the civil law jurisdictions continental Europe. They note informally
that greater fee shifting is more likely to lead parties to decide not to contest
litigation, but they do not model decisions to file and answer explicitly. One of
the models here does model that explicitly, but the parties almost always filed
and answered, though the limited situations in which contestation did not occur
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were consistent with their claim. Meanwhile, the data provide partial support
for Dari-Mattiacci and Saraceno’s observation that the litigation rate depends
solely on trial costs. The data indeed appear to show that trial costs have a
far greater effect on the litigation rate than the degree of fee-shifting and case
quality, but these also can materially affect the litigation rate.

The results generally illustrate the importance of Dari-Mattiacci and Sara-
ceno’s assumption that the parties’ evidentiary signals do not reveal information
about the merits. Under this assumption, the English rule tends to improve ac-
curacy with relatively low costs, but when the information is about the merits,
the English rule generally results in greater inaccuracy. When liability is at
issue, however, the English rule appears slightly to reduce inaccuracy. As a
further complication, all of these conclusions are sensitive to the definition of
accuracy, and an alternative definition that focuses on per-case accuracy instead
of average accuracy produces quite different results.

Overall, the results are sufficiently nuanced and sensitive to model specifica-
tion that the exercise highlights the difficulty of reaching conclusions about the
effects of fee-shifting rules that are applicable to a wide range of models. The re-
sults are too numerous to be discussed in any more than cursory detail here, but
an Online Repository, available at https://github.com/mbabramo/Fee-shifting-
article/, contains over 110,000 files, including summary data, heatmaps, logs and
the resulting equilibria for each of 35,350 model permutations, plus scatterplots
illustrating variables such as accuracy measures, trial rates, and settlement bids
for various permutations of trial costs, case quality, and fee shifting. In addition,
the Online Repository includes two appendices, one providing a brief introduc-
tion to the von Stengel et al. algorithm and the other applying the algorithm
to a nondiscretized version of the algorithm, an approach that allows for an
arguably truer replication of some of Dari-Mattiacci and Saraceno’s results, but
only where those results do not include discontinuities in the parties’ bid func-
tions. A separate repository at https://github.com/mbabramo/ACESim4/tree/
feeshifting contains the complete source code, and a ReadMe.txt file provides
information about how to replicate the results.

2 Analytical Models of Two-Sided Asymmetric
Information

Because this article’s goal is to illustrate how computational models can build on
limitations of an analytical model, and vice versa, I will focus on the structure
and methodological choices in Dari-Mattiacci and Saraceno (2020). I begin
by reviewing Friedman and Wittman (2006) [7], the model upon with Dari-
Mattiacci and Saraceno build, before exploring the Dari-Mattiacci and Saraceno
model and its assumptions.
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2.1 Friedman and Wittman’s Averaged Signals Model

In one-sided information models, the structure of bargaining often affects which
party receives most of the surplus. Friedman and Wittman avoid this problem
by adopting the bargaining protocol of Chatterjee and Samuelson (1983) [2].
In Chaterjee-Samuelson bargaining, the plaintiff and defendant simultaneously
submit offers. If the plaintiff’s exceeds the defendant’s, the case definitively set-
tles at the midpoint; otherwise, bargaining has failed, and trial results. Fried-
man and Wittman justify this bargaining structure not on the ground that the
protocol is commonly used (it is not), but on the ground that it provides a
useful reduced form of a more complicated bargaining process. With Chaterjee-
Samuelson bargaining, a case may go to trial even though there is a social surplus
from settlement given the parties’ expectations. The parties shade their offers
in the hope of claiming as much of the settlement surplus as possible, even at
the risk of bargaining failure.

The informational structure is arrestingly simple. The plaintiff observes a
signal θp drawn from a known distribution, and the defendant independently
observes a signal θd drawn from the same distribution. The principal results
of the paper apply to a “basic litigation model” in which the distribution is
the uniform distribution; this extends without loss of generality to any uniform
distribution between a lower bound of L and an upper bound of U . In the
event that settlement fails, a judgment is entered in the amount of the average
(θp+θd)/2. Perhaps one can imagine situations in which this might be realistic.
For example, the parties might have information about different components of
damages in a case in which liability is uncontested, and should trial ensue, the
information will be revealed and the judgment will be the sum. But a more in-
tuitively appealing model in most situations would reverse the causality. Signals
would depend on the underlying truth to be revealed at judgment, rather than
the judgment depending on signals. Friedman and Wittman cleverly recognize,
however, that modeling litigation in this way makes the model tractable.

Friedman and Wittman derive a Nash equilibrium in the basic litigation
game. In this equilibrium, the plaintiff will ordinarily offer 2

3θp − 2c + 1
2 , and

the defendant will ordinarily offer 2
3θd +2c− 1

6 , where c represents each party’s
trial cost. The word “ordinarily” signals what may seem a mild caveat: Neither
party will ever make an offer beyond the range of the other party’s possible
offers. Thus, the plaintiff’s offers are truncated above at min(1, 2c + 1

2 ) and
below at max(0, 2c − 1

6 ), while the defendant’s offers are truncated above at
min(1, 7

6 − 2c) and below at max(0,−2c + 1
2 ). Friedman and Wittman do not

eliminate the possibility that there might be some nonlinear Nash equilibrium,
but they prove that the equilibrium they derive is the unique nontrivial piecewise
linear equilibrium. There are also infinitely many trivial equilibria, in which the
plaintiff’s settlement demands always exceed the defendant’s.
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2.2 Dari-Mattiacci and Saraceno’s
Evidentiary Signals Model

Dari-Mattiacci and Saraceno (2020) illustrate the challenge of building on Fried-
man and Wittman by successfully extending the model to fee shifting. The
article includes an online appendix with 60 pages of proofs. The difficulty stems
from the need to address four principal cases, depending on relative values of
parameters, and within these principal cases, to make various calculations that
depend on the relative values of other parameters, including in many instances
five different formulas for five different ranges of a variable. The resulting anal-
ysis is testimony both to human ingenuity and to endurance, and it makes
breakthroughs in our understanding of the effects of fee-shifting with two-sided
asymmetric information.

As in Friedman and Wittman, plaintiff and defendant receive signals, now
denoted θΠ and θ∆, respectively, and the judgment is an average of the signals.
Now, however, both parties have common knowledge of the true merits of the
litigation, denoted by q. The signals thus do not serve the function of informing
the parties of the true merits, but rather of providing the parties with evidence
that they may use to convince the court. The plaintiff’s signal θΠ is drawn
from a uniform distribution on the interval (0, q), and the defendant’s signal,
on the interval (q, 1). The plaintiff’s best possible evidence, where θΠ = q,
would convince the court that the judgment must be at least q. Similarly, the
defendant’s best possible evidence, where θ∆ = q, would convince the court that
the judgment must be no more than q.

The fee-shifting rule that Dari-Mattiacci and Saraceno primarily analyze
is triggered based on (1) whether the final judgment is above or below 1

2 (i.e.,
which party “wins” in the sense of being awarded more than half of the contested
amount), and (2) whether the evidence of the winning party is sufficiently strong.
If the judgment is less than 1

2 , then the defendant might be able to shift its costs
to the plaintiff, but only if the defendant’s signal falls below some threshold, i.e.
θ∆ < t, where 0 ≤ t ≤ 1. Likewise, if the judgment is greater than 1

2 , then the
plaintiff might be able to shift its costs to the defendant, but only if θΠ > 1− t.
An intuition is that a court will only order shifting of fees when those fees were
spent on producing strong evidence. When t = 0, fees will never be shifted, so
this extreme is the American rule of no fee shifting, and when t = 1, fees will
always be shifted to a winning party (i.e., to the plaintiff if the final judgment
exceeds 1

2 and to the defendant if the final judgment is less than 1
2 ), so that

extreme is the English rule of universal fee shifting. The t parameter allows for
a continuum of fee-shifting rules.

This information structure enables Dari-Mattiacci and Saraceno to derive the
offers that the parties will make. They prove that each party’s offer function is a
best response to its opponent’s and thus that a Bayesian Nash equilibrium exists.
They also derive formulas for settlement amounts, along with identification of
the ranges of parameter values where such settlements occur, and accordingly of
the litigation rate. They prove that the litigation rate depends only on c (now
representing the combined trial cost of the two parties) and is thus independent
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of both case quality q and the fee-shifting rule t. This produces the surprising
conclusion that the litigation rate is the same under both the American and the
English rule. Finally, they offer a calculation of litigation accuracy, and they
prove that when costs are below a certain threshold, the English rule produces
more accuracy than the American rule, while the reverse is true when costs are
above a certain threshold. The stylized fact that litigation is cheaper in England
may thus help explain the choice of rule in each country.

2.3 Assumptions in Dari-Mattiacci and Saraceno’s Model

The Dari-Mattiacci and Saraceno model depends on many assumptions, often
driven, quite reasonably, by the demands of mathematical tractability. It is
difficult to develop strong intuitions about whether they matter. In identifying
these assumptions, I create a series of challenges for a computational model that
aspires to assess the robustness of the analytical model.

Parameter values

Balanced true merits The true merits variable is constrained so that 1
3 ≤

q ≤ 2
3 . The reason for this constraint is that with more extreme values of q, the

increasingly one-sided nature of asymmetric information leads the pure strategy
equilibria derived by the authors to break down. A computational model ideally
would be able to find an equilibrium with relatively extreme quality values.

Low or moderate cost Dari-Mattiacci and Saraceno follow Friedman and
Wittman in implicitly assuming that the cost variable is not so high that the
plaintiff’s untruncated offer range is entirely below the defendant’s untruncated
offer range. The truncation functions defined by Friedman and Wittman are
undefined in that case, because when their c is sufficiently high, they instruct
that the plaintiff’s offers should be truncated above at 1 and below at a number
greater than 1, and similarly the defendant’s offers are truncated below at 0 and
above at a number less than 0. With sufficiently high costs, there will be many
Nash equilibria; the parties will be determined not to go to trial, but neither
party would deviate from any positive allocation of the surplus from settlement.
Literal application of the Dari-Mattiacci and Saraceno formula, however, would
lead to both players truncating their bids rather than choosing any of these
equilibria.

In a subtle way, the Dari-Mattiacci and Saraceno cost assumption is more
restrictive than Friedman and Wittman’s. A computational model can be used
to assess whether parties’ strategies form an equilibrium, and with sufficiently
high costs, the bid functions identified by Dari-Mattiacci and Saraceno in some
cases do not form equilibria. This can be traced in part to a complication in what
Dari-Mattiacci and Saraceno call Case 4B. They implicitly assume that the bid
functions that they derive would each contain a discontinuity, but if 6c(1−q) > 1,
the plaintiff’s bid function consists only of a single line segment. For example,
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the code at https://dotnetfiddle.net/5XNcYl illustrates that for the parameters
t = 0.8, q = 0.4, c = 0.3, the plaintiff’s strategy cannot be a best response,
because, given the defendant’s strategy, the plaintiff would be slightly better off
with a bid function in which it always bids one-third of its normalized signal.
It establishes this by calculating the players’ utility to very high precision with
the recommended and alternative plaintiff strategy. In correspondence, Dari-
Mattiacci and Saraceno have acknowledged this complication and that their
model implicitly assumes that c is not too high. This is a reasonable assumption,
but a challenge for the computational model is to overcome it.

Structural constraints

Piecewise linearity Dari-Mattiacci and Saraceno explicitly assume a lin-
ear relationship between the parties’ signals and their offers, but allow for dis-
continuities at points where fee shifting would change. Because fee shifting
depends partly on the quality of the evidence possessed by the winning party,
a litigant will know whether it will be entitled to fee shifting if it wins, and the
signal values at which this fact changes are points at which Dari-Mattiacci and
Saraceno are able to break the problem down into smaller pieces. Piecewise lin-
earity thus allows for explicit modeling of the effects of changes in a fee-shifting
rule, but because it is unclear how restrictive this assumption is, it is a prime
candidate for relaxation in a computational model.

Asymmetric information quality equivalence Recall that the plain-
tiff receives a signal in the range (0, q) and the defendant, in (q, 1). As a con-
sequence, when q > 1

2 , the plaintiff’s signal has a greater potential effect than
the defendant’s, and when q < 1

2 , the reverse is true. The single variable q thus
serves two, independent functions in the model: one is to represent the “true
merits” of the case, while the other is to represent the degree of information
asymmetry. This greatly increases the tractability of the model, and plausibly
it allows for consideration of both issues related to accuracy and issues related to
information asymmetry. The problem, though, is that the issues are necessarily
conflated; where a case is at an extreme of the probability distribution, there
is always high information asymmetry. There is no obvious reason to believe
that true merits should generally track information asymmetry in this way. The
question thus arises whether the results would be the same if the model allowed
independent variation of true merits and information asymmetry.

Signals independent of true merits Dari-Mattiacci and Saraceno refer
to the signals that the parties receive as “evidence,” but there is a paradox:
The parties are assumed to know the true merits of the case (q) and indeed
use this information in constructing their offer functions. Thus the variance
in the signals that each party may receive has nothing to do with the merits.
The signal informs each party only about the party’s likely ability to persuade
the judge. The judge does not know the true merits, but is trying to guess the
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true merits. The higher q, the higher the parties’ signals will tend to be, so
the judge’s strategy is reasonable, even if non-Bayesian. But the result is that
from the perspective of the parties, for whom q is fixed, the randomness in case
outcomes has to do only with who is lucky in finding promising evidence.

This point can be more clearly seen in a transformation of the model that
Dari-Mattiacci and Saraceno offer. They note that the signals θΠ and θ∆ can be
mapped one-to-one onto signals from 0 to 1, which they label zΠ and z∆. These
signals are thus independent signals from a unit uniform distribution, and the
θ signals can be derived from them according to the formulas θΠ = qzΠ and
θ∆ = q + (1− q)z∆. This highlights that the θ signals result from commingling
the true merits of the case and the random uniform distribution draws. With
these transformations, the judgment depends on the following formula:

J(zΠ, z∆) =
1

2
q +

1

2
(qzΠ + (1− q)z∆) (1)

This presentation highlights that the decision is half based on the true merits
of the case, independent of any evidence presented by the parties. The other
half is a weighted average of the parties’ uniform distribution draws, with the
weights equal to q, here representing the degree of information asymmetry. The
only reason that this makes sense from the judge’s perspective is that the judge
does not observe zΠ and z∆ directly. This approach is convenient in a mathe-
matical model that seeks, as theirs does, to measure accuracy. It is considerably
easier (though still extraordinarily difficult) to measure outcomes relative to the
constant q than it would be relative to a function of q and the parties’ signals.

A challenge for the computational model is to assess whether results about
accuracy continue to obtain when the true merits are defined to be inclusive of
the parties’ normalized signals. On this formulation, q would represent knowl-
edge that the parties share about the true merits, and the z signals, private
information about the true merits. In applying Equation 1, the judge obtains
not only the judgment, but also what could be considered the true merits. This
is thus a conceptual reformulation with no implications for which cases settle.
It requires only an alteration of the definition of accuracy.

Game structure

Fee-shifting structure Fee shifting in Dari-Mattiacci and Saraceno’s model
depends not only on which party wins more than half of the judgment at trial,
but also on the quality of the evidence produced by the winning party. This
is mathematically convenient, because each party knows the quality of its own
evidence and thus whether fee shifting will occur for any given value of the
opponent’s signal and any value of t. An alternative approach would be for
fee shifting to depend on both parties’ evidence. Indeed, Dari-Mattiacci and
Saraceno explicitly consider fee shifting based on the margin of victory. If one
redefines t to represent the margin-of-victory parameter, then if θΠ + θ∆ < t,
the plaintiff must pay the defendant’s fees, and if θΠ + θ∆ > 2 − t, then the
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defendant must pay the plaintiff’s fees. In this regime, if t = 0, no fee shifting
occurs (the American rule), and if t = 1, fee shifting always occurs absent an
evenly split judgment (the English rule); thus, the margin-of-victory approach
converges with the other approaches at the extremes. Dari-Mattiacci and Sara-
ceno explicitly calculate the parties’ offers under this approach, but they do
not prove their results related to accuracy. This raises the question whether
their accuracy results are robust to the alternative specification. One might
also imagine other fee-shifting rules, such as a simple rule in which a party al-
ways occurs when the party wins half of the judgment but the proportion of
fees shifted may vary from 0 to 1.

Damages issue Dari-Mattiacci and Saraceno explicitly describe their model
as one in which the parties are arguing about how to divide a disputed asset,
such as in a case of divorce, and they point out that without loss of general-
ity, this can be extended to a judicial determination of damages between some
minimum and maximum values. An extension would be to consider cases where
liability is at issue, i.e. where the plaintiff will receive 1 if θΠ + θ∆ > 1 and 0
otherwise.

Contestation Dari-Mattiacci and Saraceno’s model assumes that the plain-
tiff always files the lawsuit and that the defendant always answers. Shavell
(1982) [27] and others have highlighted that some potential litigants may choose
not to litigate. In their Online Appendix, they offer some informal considera-
tions of how fee shifting might affect filing. They reason, but do not explicitly
prove, that the greater the fee-shifting parameter t, the more often the plaintiff
will not file or the defendant will not contest litigation. This could affect the
settlement bids that the parties make. Thus, one cannot be sure that an equi-
librium in the original model will remain an equilibrium when the parties are
allowed not to contest the litigation.

Risk neutrality The plaintiff and defendant are assumed to be risk neutral.
Incorporating risk aversion into the model would likely add considerable chal-
lenge, though the argument could still proceed in case-by-case fashion.

Accuracy definition Dari-Mattiacci and Saraceno define inaccuracy in their
appendix as “the square distance between the expected outcome Et and the
merits q.” I have already explored how one might reconceive the definition of
the merits so that all evidence is counted as part of the true merits, so I will
continue moving from right to left in this definition.

The definition of Et is complex, involving double integrals over both costs
and the parties’ signals. The essence is that it is a measure of the expected
outcome of a dispute, taking into account both the settlements and the trials.
The outcome in the event of trial that they calculate is represented by G, which
“captures both the decision on the merits and fee shifting.” For example, if
the judgment is for 0.45 and the plaintiff pays costs of 0.10 to the defendant,
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then G = 0.35. The inclusion of fee-shifting costs reflects that imposition of
fee shifting not only affects settlement negotiations, but also affects the amount
that the plaintiff must pay to the defendant at trial. It is reasonable to view the
difference between the expected value of G and the value of q as a measure of
accuracy, but the question remains whether conclusions about accuracy would
be robust to alternative specifications.

Outcome expectation The specification chosen focuses on the expecta-
tion of settlement or trial results, rather than on the actual result in particular
cases. It is a comparison of the expectation of the result with the true merits,
not a measure of the error. If, for example, the correct result based on the true
merits would be for the defendant to pay the plaintiff 0.50, and in one scenario
the defendant pays 0 and in another equally likely scenario the defendant pays
1, then this measure would count the legal system as perfectly accurate. Be-
cause the parties are risk-neutral, they would be indifferent between receiving
perfectly accurate results and results that are correct on average. An alternative
approach, especially important with risk-averse parties but conceptually useful
even for risk-neutral parties, would measure inaccuracy within each case rather
than based on an average across cases. Easier said than done, of course. In the
analytical model, this would require moving a minus q term and a squared term
within the double integrals in the current Et definition.

Accounting for costs The accuracy measure also ignores the pre-fee-
shifting costs that the parties pay. Dari-Mattiacci and Saraceno note “that the
plaintiff receives G− c

2 and the defendant pays G+ c
2 .” (Appendix p. 45) Imag-

ine a case with very high costs and no fee shifting, where each party spends
a million dollars and the court arrives at precisely the correct conclusion that
the defendant owes the plaintiff one dollar. From this definition’s perspective,
this outcome counts as a perfectly accurate result. That is a plausible defini-
tion of accuracy, but one that offers no comfort to the parties. An alternative
definition of accuracy would consider any amounts actually spent at trial, for ex-
ample counting the outcome from the plaintiff’s perspective as G− c

2 . A similar
definition could measure accuracy from the defendant’s perspective. Either of
these two approaches captures three distinct aspects of costs: (1) Costs impact
settlement negotiations; (2) when trial occurs, costs are deadweight losses to
society at large; and (3) costs may reduce (or perhaps in some cases increase)
the accuracy of adjudication viewed as a black box from the perspective of
each individual litigant. Although it is reasonable for Dari-Mattiacci and Sara-
ceno to define accuracy entirely independently of cost, an interesting question is
whether any conclusions based on this definition will extend to definitions that
incorporate costs.

Squared accuracy Finally, one might quibble about the use of a squared
term rather than an absolute value. Admittedly, it is conventional to measure
(in)accuracy using the ℓ2 norm rather than the ℓ1 norm. The convention reflects
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the dominance of ordinary least squares regression over least absolute deviation
regression, but that dominance stems as least in part from the greater tractabil-
ity of the former. Portnoy and Koenker (1997) [23] note that computational
power mitigates this advantage, and that an advantage of the ℓ1 norm is that it
is more robust to outliers. Because the Dari-Mattiacci and Saraceno definition
compares the outcome expectation with q, its results extend to the ℓ1 norm.
The computational results here will be reported using the ℓ1 norm, because
interpretation is more intuitive, because this will make it more straightforward
to compare different accuracy measures, and because this will not change any
results about when accuracy rises or falls.

3 Litigation as an Extensive Form Game

This section describes the discretization of the Dari-Mattiacci and Saraceno evi-
dentiary signals game into an extensive form game, in which each player receives
one of a finite set of signals and must choose one of a finite number of bids. It
then acknowledges the objection that there might be many equilibria to any
parameterization of the game by running the von Stengel et al. algorithm with
5,000 different random initializations, producing almost 200 different equilibria.
This result highlights that when assessing the effect of changing parameters, the
algorithm must be executed many times so that multiple families of equilibria
can be identified if they exist.

3.1 A Discretized Evidentiary Signals Game

In the discretized model, each party receives a discrete signal from a set of nS

possible signals and then must make a discrete offer from nB available bids. For
legibility, Figure 1 illustrates a highly simplified version of this game for nS = 2
and nB = 2, but I will generally use nS = 10 and nB = 10, which produces a
game tree consisting of 11,111 nodes. The circles identify the players (Chance,
Plaintiff, or Defendant), as well as information set numbers. The plaintiff does
not observe the signal received by the defendant and vice versa. Thus, for
example, at each of the four points in the tree labeled as “D1,” the defendant
has the same information set, in which it has received the signal 1 (corresponding
to z∆ = 0.25) instead of the signal 2 (corresponding to z∆ = 0.75). Thus, the
defendant must assign the same move probabilities over its two alternative offers
(corresponding to 0.25 and 0.75) at each of these points. The diagram illustrates
an equilibrium identified by the algorithm for this simple game, in which each
player is always aggressive, with the plaintiff demanding 0.75 and the defendant
offering only 0.25. Under the Chaterjee and Samuelson bargaining protocol, this
does not result in a settlement.

The strategies permitted with this approach are in some ways more con-
strained and in some ways less constrained than the strategies in Dari-Mattiacci
and Saraceno. The analytical model restricts the litigants from playing non-
linear strategies between the points that produce discontinuities in their pro-
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C

C
P Signal: 1

Probability: 0.50

P0
D Signal: 1

Probability: 0.50

D1
P Offer: 1

Probability: 0

(0.25, 0.75)D Offer: 1
Probability: 1

(0.50, 0.50)D Offer: 2
Probability: 0

D1
P Offer: 2

Probability: 1

(0.35, 0.50)D Offer: 1
Probability: 1

(0.75, 0.25)D Offer: 2
Probability: 0

P0
D Signal: 2

Probability: 0.50

D2
P Offer: 1

Probability: 0

(0.25, 0.75)D Offer: 1
Probability: 1

(0.50, 0.50)D Offer: 2
Probability: 0

D2
P Offer: 2

Probability: 1

(0.45, 0.40)D Offer: 1
Probability: 1

(0.75, 0.25)D Offer: 2
Probability: 0

C
P Signal: 2

Probability: 0.50

P3
D Signal: 1

Probability: 0.50

D1
P Offer: 1

Probability: 0

(0.25, 0.75)D Offer: 1
Probability: 1

(0.50, 0.50)D Offer: 2
Probability: 0

D1
P Offer: 2

Probability: 1

(0.50, 0.35)D Offer: 1
Probability: 1

(0.75, 0.25)D Offer: 2
Probability: 0

P3
D Signal: 2

Probability: 0.50

D2
P Offer: 1

Probability: 0

(0.25, 0.75)D Offer: 1
Probability: 1

(0.50, 0.50)D Offer: 2
Probability: 0

D2
P Offer: 2

Probability: 1

(0.60, 0.25)D Offer: 1
Probability: 1

(0.75, 0.25)D Offer: 2
Probability: 0

Figure 1: The game tree with nS = 2 and nB = 2
.

ferred equilibria. The computational model may allow for nonlinearities between
the critical points, but only at the 10 discrete signal values. Thus, analytical
and computational approaches both impose admittedly arbitrary constraints on
what strategies are permissible. Many articles in the settlement bargaining lit-
erature impose tighter constraints, such as with models where a party receives
one of two signals instead of one of ten.

An important question is whether the differences between these restrictions
and Dari-Mattiacci and Saraceno’s significantly affect the equilibria. One can
reason that these assumptions do not seem critical to game dynamics, but it
is difficult to be sure. There is no way to test whether the piecewise linearity
assumption is driving the analytical model’s key conclusions without some other
model that relaxes those assumptions. Fortunately, the computational model
can be such a model. Later, I will use the computational model to calculate
equilibria employing the discretization assumption. But one can also use com-
putation to measure the extent to which, for any given parameters, a discretized
version of the Dari-Mattiacci and Saraceno model deviates from equilibrium.

This assessment requires two steps. First, I calculate each player’s offer value
at the discrete signal values, and then identify the discrete offer value nearest
that value. This produces discretized versions of the bid functions derived by
Dari-Mattiacci and Saraceno. Second, I determine each player’s best response
to the other player’s strategy using an algorithm detailed in Lanctot (2013,
p. 141) [17] and calculate the exploitability of the pair of strategies. That
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is, let σp represent the strategy of player p at the discretized equilibrium,
let σ−p represent the strategy of that player’s opponent, and let Up(σp, σ−p)
represent the expected return of player p given these strategies. Now, let σp

represent the best response of player p to σ−p. I then define exploitability of
player −p’s strategy E−p = Up(σp, σ−p) − Up(σp, σ−p). Allowing P and D
to represent, respectively, the plaintiff and defendant in the discretization of
the Dari-Mattiacci and Saraceno equilibrium, I define overall exploitability E =
EP+ED

2 , i.e. the average of the amounts that each player can improve its score
by changing its strategy holding the other’s strategy constant. By definition, at
a Nash equilibrium, overall exploitability is zero, and so E provides a measure
of how much discretization moves the strategies from Nash equilibrium.

Figure 2 illustrates the results. The outer horizontal c axis represents trial
cost. The outer vertical q axis represents litigation quality. All of the later
simulations will be executed with q ∈ { 1

6 ,
1
3 ,

1
2 ,

2
3 ,

5
6}, but I omit the row for q = 2

3
where it is identical or symmetric to the row for q = 1

3 , and I omit the extreme
values of q because they are outside the bounds assumed by Dari-Mattiacci
and Saraceno. (Diagrams including these rows, both for this and for other
truncated diagrams produced later, are available in the Online Repository.)
Each mini-graph represents the measurement of exploitability E for each value
of the fee-shifting threshold t in {0, 1

100 ,
1
50 ,

3
100 , ..., 1}. One can see that for

c ≤ 1
8 , exploitability is very close to zero; over all of these cases, the average

E value is 0.00047. This indicates that the discretization changes the strategic
dynamics of the game very little. With higher trial costs, considerably higher
exploitability values (up to 0.067) can be seen in Figure 2. This identifies where
Dari-Mattiacci and Saraceno’s implicit assumption, noted earlier, that c is not
too high causes their derived strategies to be out of equilibrium.
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Figure 2: Exploitability of discretized Dari-Mattiacci and Saraceno strategies
.

Using the discretization of the Dari-Mattiacci and Saraceno strategies, one
can calculate outcome variables. Results on accuracy are illustrated in Figure 3.
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The accuracy A is defined analogously to Dari-Mattiacci and Saraceno, i.e. by
comparing each party’s expected outcome (taking into account settlements and
judgments, including fee shifting, and not taking into account each party’s own
legal costs) to the true merits q, though for easier visual interpretability, the
absolute value instead of the square of the difference is shown. This illustrates,
as Dari-Mattiacci and Saraceno prove, that for relatively low costs, the English
rule produces at least as good accuracy (relatively low A) in comparison to the
American rule. This does not reflect that the reverse is true with relatively
high costs, again presumably due to their implicit assumption governing costs.
Note also that accuracy is very high when q = 1

2 . This does not indicate that
each case produces the correct result, but that the Dari-Mattiacci and Saraceno
accuracy measure is based on averages across cases, and with q = 1

2 , the cases in
which the plaintiff receives too much exactly balance those in which the plaintiff
receives too little. This is not surprising given that the game is symmetric.
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Figure 3: Accuracy with discretized Dari-Mattiacci and Saraceno strategies
.

Figure 4, meanwhile, illustrates the analytical model’s conclusions regarding
the trial rate L. As Dari-Mattiacci and Saraceno show, and as is reflected here
at least with c ≤ 1

8 , trial rates are invariant to the degree of fee shifting and the
quality of the true merits, though small wobbles are observable here as a result
of discretization. Also as expected, trial rates fall as the cost of trial rises. Note
that trial rates are relatively high, perhaps in part because of the assumption
of risk neutrality.

The accuracy and trial results, it is worth emphasizing, are simply calcu-
lations based on discretizations of Dari-Mattiacci and Saraceno’s constructed
equilibria, not equilibria calculated by application of the von Stengel et al. algo-
rithm. These measurements, however, provide a baseline that one can compare
to results from equilibria calculated by that algorithm. I will thus be able to
assess whether exact, perfect equilibria calculated by the algorithm produce sim-
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Figure 4: Trial with discretized Dari-Mattiacci and Saraceno strategies
.

ilar results in the discretized version of the original additive evidence game and
in variations generated by relaxing various assumptions of the Dari-Mattiacci
and Saraceno model.

3.2 Equilibria for a single set of parameters

Which equilibrium of a game the von Stengel et al. algorithm identifies may
depend on the initialization of the information sets. I ran the algorithm 5,000
times for a single set of parameter values representing the middle of the values
I am exploring, i.e. t = 1

2 , q = 1
2 , c = 1

8 , and identified 194 distinct equilibria.
Figure 5 illustrates for each player an average strategy in which each equilibrium
strategy is played with equal probability, without regard to whether the player’s
opponent chooses the corresponding equilibrium strategy. For example, when
receiving a signal corresponding to zΠ = 0.05, the plaintiff makes an offer BP =
0.35 approximately 8% of the time.

0.95 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0.85 0% 0% 0% 0% 0% 0% 0% 0% 3% 7%

0.75 0% 0% 1% 5% 12% 18% 37% 52% 74% 92%

0.65 32% 37% 39% 61% 57% 51% 63% 48% 24% 1%

0.55 31% 34% 31% 34% 31% 30% 0% 0% 0% 0%

0.45 29% 29% 29% 0% 0% 0% 0% 0% 0% 0%

0.35 8% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0.25 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0.15 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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P
O
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0.95 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0.85 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0.75 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0.65 0% 0% 0% 0% 0% 0% 0% 0% 0% 8%

0.55 0% 0% 0% 0% 0% 0% 0% 31% 31% 30%

0.45 0% 0% 0% 0% 30% 31% 35% 29% 32% 29%

0.35 1% 25% 44% 59% 48% 55% 58% 38% 38% 33%

0.25 91% 74% 56% 41% 22% 14% 7% 3% 0% 0%

0.15 8% 1% 0% 0% 0% 0% 0% 0% 0% 0%

0.05 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

D
O
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Figure 5: Average strategies across 194 equilibria for t = 1
2 , q = 1

2 , c =
1
8

.

Although there are a large number of equilibria, they cluster near the equi-
librium derived by Dari-Mattiacci and Saraceno, represented by dotted lines,
though most of the equilibria reflect somewhat more aggressive game play. Some
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of the equilibria differ from others in ways that have no bearing on the game
outcome. For example, if plaintiff chooses BP ≥ 0.75 for some signal, settle-
ment will never occur, and so an offer of 0.75 is functionally equivalent to an
offer of 0.85. Of the 194 equilibria identified, 106 are pure strategy equilibria,
while 88 reflect mixed strategies, such as one in which given a particular signal,
a party made one offer with exact probability 4,164

15,277 and another with proba-

bility 11,113
15,227 . (The von Stengel et al. algorithm requires use of exact rational

numbers rather than floating point approximations.) Correlated strategies over
the 194 equilibria would by definition also be exact Nash equilibria. The average
strategy of the exact equilibria in Figure 5 is not itself an exact equilibria, but
is reasonably close, with exploitability (E) = 0.0027.

It will not be practical to seek out 5,000 equilibria for each of the 35,350
parameter values explored in this article and the Online Repository, as this
exercise took nearly three and a half hours of computer time. But our later
results will continue to reflect initialization of each information set to a random
determination of a fully mixed strategy for each player, as I run the algorithm
for every value of t ∈ {0, 1

100 ,
1
50 ,

3
100 , ..., 1}. It will thus be possible to identify

different families of equilibria that arise for very close values of t.

4 Results

This section aggregates results from the discretized additive evidence game as
defined by Dari-Mattiacci and Saraceno and then progressively relaxes assump-
tions of their model identified in Section 2.3.

4.1 Aggregating results over parameter values

Figures 3 and 4 calculated accuracy and trial results using the strategies con-
structed by Dari-Mattiacci and Saraceno. Figures 6 and 7 show the analogous
results calculating discretized equilibria with the von Stengel et al. algorithm.
More detail is available for each of the 2,525 permutations of parameter val-
ues executed under these assumptions in the Online Repository folder Detailed
results : Original.

These results are generally close to the results corresponding to Dari-Mattiacci
and Saraceno’s constructed equilibria, at least for c ≤ 1

8 . The shapes of the ac-
curacy curves are very similar, reflecting that their results concerning the better
accuracy of the English rule with low trial costs extend to the computational
model. Trial rates in the computational model are a bit higher, and multiple
equilibria are apparent. The most notable difference is that with sufficiently
high costs, the English rule appears to increase trial rates. For example, with
q = 1

3 and c = 1
4 , some equilibria with around half of cases being litigated exist

at all fee shifting levels, but equilibria with much lower trial rates are apparent
only with relatively low levels of fee shifting. I must, however, acknowledge a
limitation of the computational model here. The absence of evidence of equi-
libria with lower trial rates does not prove that no such exact equilibria exist,
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Figure 6: Accuracy with calculated equilibria
.
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Figure 7: Trial rates with calculated equilibria
.

only that the algorithm did not identify them over a range of fee shifting values
with different randomized initial conditions.

4.2 Relaxing assumptions

The analysis so far has endeavored to track Dari-Mattiacci and Saraceno as
closely as possible. Use of the computational model, which discretizes signals
and allows for different bid for each signal, reinforces their central results while
clarifying the importance of their implicit assumption regarding trial costs. The
computational model’s potential lies not so much in replication, but in chang-
ing critical assumptions. Section 2.3 identified a number of restrictive assump-
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tions in Dari-Mattiacci and Saraceno’s model. Though justified by the need for
tractability, these assumptions either seem unrealistic or apply to some but not
all cases. In this subsection, I will identify how various assumptions may be
relaxed.

The model in Figures 6 and 7 already relaxes three assumptions: balanced
asymmetric information, low or moderate cost, and piecewise linearity. Al-
though only q values permitted by the Dari-Mattiacci and Saraceno model are
shown, a broader range of such values is included in the Online Repository.
Figures 6 and 7 illustrate a broader range of costs than Dari-Mattiacci and
Saraceno’s implicit costs assumption allows, and discretizing signals and bids
inherently relaxes piecewise linearity.

With the computational model, one can also replace the assumption of asym-
metric information quality equivalence with an assumption of equal information
strength. (The Online Repository also includes models in which the plaintiff
has one-fourth of the available private information.) This assumption avoids
the conflation of the true merits with the degree of information asymmetry.
The judgment is thus computed as follows:

J(zΠ, z∆) =
1

2
q +

1

4
(zΠ + z∆) (2)

As in Equation 1, half of the judgment depends on q, but the remainder of the
judgment no longer weights the parties’ private signals by q and 1− q.

With the change embodied in Equation 2, it also becomes straightforward
to remove the assumption that signals are independent of the true merits with
an assumption that they form part of the merits. That is, q now represents
shared information about half of the merits, and J in Equation 2 now represents
the merits. The normalized information signal that each party has about how
the court will rule is now evidence of the merits rather than just information
that may sway the court even though it has nothing to do with the merits.
Because this is a change only in interpretation, it does not require any additional
computation. It merely requires a different baseline for calculating accuracy.
(I will consider other changes to the accuracy definition below.) A possible
limitation of this assumption is that it ignores that trial judgments themselves
may reflect noise or bias, but it seems less plausible that parties would have
asymmetric information about noise than that they would have asymmetric
information about the merits. I leave the task of modeling judicial error and
shared information about judicial bias to future work.

The computational model also makes it straightforward to change the fee-
shifting rule. First, I consider the margin-of-victory fee shifting for which Dari-
Mattiacci and Saraceno calculate equilibria but do not offer results regarding
accuracy. Second, I also consider what I will call “ordinary fee shifting.” With
this approach, the party that wins more than half of the judgment receives the
benefit of fee shifting, but the proportion of the winning party’s legal fees paid
by the other party is multiplied by t. Note that t serves a different function in
the original Dari-Mattiacci and Saraceno definition than in these alternatives.
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The computational model also enables easy toggling between a damages (or
asset allocation) issue, as in Dari-Mattiacci and Saraceno, and a liability issue.
This requires only changing the pre-fee-shifting payoffs so that in cases in which
a plaintiff wins a judgment for greater than 1

2 , the plaintiff receives a payoff of 1,
and in all other cases, the plaintiff wins 0. (This reflects an assumption that the
plaintiff bears the burden of proof, an issue that is irrelevant in Dari-Mattiacci
and Saraceno’s model, where the probability that J = 1

2 is zero.)
A more challenging task for the computational model is to allow the parties

to decide sequentially whether to file and answer. If the plaintiff does not file, the
plaintiff receives 0, and if the plaintiff files but the defendant does not answer,
the plaintiff receives 1. Not filing or not answering avoids the payment of trial
costs. This redefinition changes the game tree. Figure 8 shows a portion of the
game tree in the simplifed game tree in which nS = 2 and nB = 2. Note that
something like this branch appears in the game tree for each combination of
plaintiff and defendant signal. I also make a further change, allowing nB = 12,
with the highest and lowest bids defined, respectively, to correspond to situations
in which the plaintiff or the defendant refuses to negotiate; without this change,
a party would never refuse to file or answer, because it could always guarantee
a settlement at a slightly more favorable value. With these changes, the game
tree contains 16,111 nodes instead of 11,111.

(0.00, 1.00)
PQuit: 1

Probability: 0

D1
PQuit: 2

Probability: 1

(1.00, 0.00)
DQuit: 1

Probability: 0

P2
DQuit: 2

Probability: 1

D3
P Offer: 1

Probability: 0

(0.35, 0.50)D Offer: 1
Probability: 0

(0.00, 1.00)D Offer: 2
Probability: 1

(0.25, 0.75)D Offer: 3
Probability: 0

(0.50, 0.50)D Offer: 4
Probability: 0

D3
P Offer: 2

Probability: 0

(0.35, 0.50)D Offer: 1
Probability: 0

(0.25, 0.75)D Offer: 2
Probability: 1

(0.50, 0.50)D Offer: 3
Probability: 0

(0.75, 0.25)D Offer: 4
Probability: 0

D3
P Offer: 3

Probability: 1

(0.35, 0.50)D Offer: 1
Probability: 0

(0.35, 0.50)D Offer: 2
Probability: 1

(0.75, 0.25)D Offer: 3
Probability: 0

(1.00, 0.00)D Offer: 4
Probability: 0

D3
P Offer: 4

Probability: 0

(0.35, 0.50)D Offer: 1
Probability: 0

(0.35, 0.50)D Offer: 2
Probability: 1

(0.35, 0.50)D Offer: 3
Probability: 0

(0.35, 0.50)D Offer: 4
Probability: 0

Figure 8: A portion of the simplified game tree with file and answer decisions
.
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Assumption A B C D E F G H

Broad costs range ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Broad quality range ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Discretized signals ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Equal information strength ✓ ✓ ✓ ✓ ✓ ✓ ✓
Signals form part of merits ✓ ✓ ✓ ✓ ✓ ✓
Margin-of-victory fee shifting ✓
Ordinary fee shifting ✓
Liability issue ✓ ✓ ✓
Contestation choice ✓ ✓
Risk aversion ✓

Table 1: Assumptions used in subsequent models

The assumption of risk neutrality can be replaced with an assumption of
mild risk aversion by modifying the parties’ payoffs in the game, so that utility
is a nonlinear function of wealth. Specifically, let U = −e−αW , where the
parameter α = 1 and W , representing each party’s initial wealth, is set at 10.
These parameters can be modified to adjust risk aversion.

Table 1 identifies the various models to be analyzed. Model A represents
the original model, while Model B adds the assumption of equal information
strength. Model C reflects the same equilibrium as Model B but calculating
accuracy relative to a baseline that includes the parties’ private information.
Models D and E build on these assumptions to test margin-of-victory and ordi-
nary fee shifting, respectively. Models F, G and H return to the same fee-shifting
rule as Dari-Mattiacci and Saraceno, incorporating all of the same assumptions
as Model C, but with liability at issue instead of damages. In Models G and H,
the parties may choose whether to contest litigation, and in Model H only, the
parties are mildly risk averse.

4.3 Results

Figure 9 aggregates the results. Each row represents one of the models de-
scribed above. The (in)accuracy values are averages of the values calculated
for each q ∈ {1

6 ,
1
3 ,

1
2 ,

2
3 ,

5
6}. Because Models C through H count the parties’

signals within the merits, with c = 0, because all cases go to trial, there is by
definition no inaccuracy. As c rises, however, the English rule tends to increase
inaccuracy in these models instead of decreasing it, revealing the importance of
this assumption. With higher costs, the parties’ offers will track their shared
information on q more closely, but this effect is much more pronounced with the
English rule. (This can be observed in diagrams contained in the Online Repos-
itory showing average plaintiff and defendant offers.) Results correspondingly
are less influenced by the parties’ private information. When q represents the
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true merits, the English rule therefore tends to improve accuracy, but when the
parties’ private information is about the merits rather than simply representing
noise, the English rule tends to increase inaccuracy.

Changing the definition of fee shifting, as represented by Models D and E,
does not alter the fundamental pattern. The most significant difference from
Model C is that inaccuracy increases gradually over the range of t values. With
the Dari-Mattiacci and Saraceno definition, given low values of t, fee shifting
will be rare, occurring only where a party wins and its own evidence is very
strong. With Models D and E, by contrast, it will be relatively rare for a party
to be able to rule out the possibility of fee shifting.

The increase in inaccuracy with the English rule does not generally mani-
fest when liability is at issue. Indeed, with sufficiently high costs and no risk
aversion (in Models F and G), there appears to be a slight reduction in inaccu-
racy with the British rule. The explanation can be traced in part to a greater
incidence of trial in the winner-take-all liability context. With relatively high
trial costs, trial rates are higher in Model F than in Model C. Because all trials
by definition produce no inaccuracy in these models, the increase in trial rates
tends to improve accuracy, all else equal. Risk aversion, meanwhile, drives trial
rates back down in Model H, and this tends to increase inaccuracy.

Another important phenomenon in Models G and H is that the parties may
decide not to file or not to answer. Unsurprisingly, parties are more likely to
give up (a) when q indicates that they have a bad case; (b) when t is relatively
high; and (c) when the parties are risk averse. (This is evident in diagrams of
quit rates available in the Online Repository.) Decisions not to contest litigation
will tend to improve accuracy. Usually, the party that decides not to contest
will be the party that would lose, and so, by avoiding a settlement, the accurate
result is achieved.

There are many nuances that Figure 9 and the summaries above do not
capture. Interestingly, for example, with c = 1

16 and q = 1
6 , the plaintiff in

Model G will decide not to file with a probability of approximately 0.7, yet the
plaintiff will always file with c = 1

8 and q = 1
6 if t < 1

2 . When the plaintiff does
file with c = 1

16 , the case always goes to trial, but with c = 1
8 , the case will

sometimes be settled. One can see here the intricate dance between the offer
decision and the parties’ decisions whether to contest litigation. Because higher
costs make settlement more likely, they may lead a party to be more willing to
contest litigation in the first place. Once t is sufficiently large, the plaintiff will
quit at greater rates, because it recognizes that the defendant will have greater
resolve in settlement negotiations. Granted, even this is a simplified story. In
an article of this length, I cannot account for every strategic nuance revealed by
the computational results, and any textual explanation will not fully describe
the dynamics of changes in the Nash equilibrium with changes in parameters.

I will conclude by using a different definition of accuracy for all of Models A-
H. This definition considers a plaintiff’s net recovery, taking into account costs
and fee shifting. Suppose, for example, that the court would award a judgment
of 0.65 but the plaintiff receives only 0.55, either as a settlement or on net
at trial after each party pays its fees and fee shifting is resolved. Under this
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Figure 9: Overall accuracy averaged across values of q
.
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definition, which focuses on the danger of undercompensation, an inaccuracy
error of 0.10 is logged. If the plaintiff receives more than the court would award
at trial, that will count as 0 inaccuracy, but it would lead to an error in a similar
measure of accuracy focusing on excessive payments by defendants and thus on
concerns of overdeterrence. Figure 10 shows the plaintiff-centered measure,
but the defendant-centered measure available in the Online Repository shows
essentially the same effects. Whether this measure better captures social welfare
than that in Figure 9 depends on factors such as risk aversion and whether
parties might be able to predict the errors before they engage in actions with
the potential to lead to litigation.

A comparison of Figures 9 and 10 illustrates the implications of this defi-
nitional choice. First, inaccuracy levels generally appear higher with the un-
dercompensation inaccuracy measure, highlighting that low levels of inaccuracy
on our earlier measures may correspond to situations in which some plaintiffs
receive way too much while others receive way too little. Second, Model A, the
computational version of Dari-Mattiacci and Saraceno’s original model, demon-
strates improvements in accuracy with greater fee shifting in Figure 9 but not
in 10. Third, Models F, G and H, corresponding to a winner-take-all liability is-
sue, illustrate that the danger of undercompensation inaccuracy becomes much
greater with high costs. The English rule appears to reduce undercompensa-
tion inaccuracy in these models, while raising undercompensation inaccuracy in
other models. Whatever the merits of the fee-shifting rule, Figure 10 illustrates
a far more malign view of the implications of high trial costs than Figure 9.

5 Conclusion

The results of this study highlight that computational game theory may al-
low relaxation of restrictive assumptions in mathematical modeling of settle-
ment bargaining, and this greater power may mean that generalizations are less
punchy and more nuanced. At least, that is the case for this application.

The equilibria identified largely fail to support Dari-Mattiacci and Saraceno’s
principal argument that the English rule might be relatively well suited for a
jurisdiction with low litigation costs. Their primary results in favor of this
proposition were (a) that with relatively low costs, accuracy would be greater
with more fee shifting, and (b) that with relatively high costs, accuracy would
be greater with less fee shifting. Because the graphs here measure inaccuracy,
this would manifest itself with downward sloping curves at the left of a row and
upward sloping curves at the right of a row. Some of the models illustrated
above reflect either (a) or (b), but none is consistent with both (a) and (b).

In further supporting the proposition that the case for fee shifting might be
relatively strong in a low-cost jurisdiction, Dari-Mattiacci and Saraceno pointed
to selection effects. They suggested that parties with weak cases would be more
likely not to litigate at all with English rule. A consequence of this is that courts
with the American rule would host a wider range of disputes, which might
be important in a common law system. (p. 3) They supported this insight,
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Figure 10: Undercompensation inaccuracy averaged across values of q
.
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however, only with informal analysis. (Appendix pp. 51-52) Computational
modeling provided limited support for this proposition. In the models in which
the plaintiff was given the option not to file and the defendant was given the
option not to defend, in virtually all cases, the plaintiff and the defendant never
took this option. When liability was at issue, however, there were some cases
in which the parties decided not to contest litigation, and these were consistent
with the filtering hypothesis. For example, with q = 1

6 and c = 1
8 , the plaintiff

will never file under the British rule, but may under the American rule.
Finally, the equilibria provide only qualified support to Dari-Mattiacci and

Saraceno’s observations about the degree to which the litigation rate depends
on trial costs, case quality, and the degree of fee shifting. Trial costs indeed
had considerable effects on the litigation rate, with higher trial costs leading as
expected to more settlement. The data did not support the proposition that
the litigation rate is entirely invariant to case quality and the degree of fee
shifting. In particular, with relatively high costs, the litigation rate increased
considerably as the degree of fee shifting approached the English rule. Still, the
litigation rate was relatively invariant to case quality, and the data supported
the conclusion that trial costs have a much greater effect on the litigation rate
than either case quality or the degree of fee shifting. This highlights the appro-
priateness of Dari-Mattiacci and Saraceno’s emphasis on accuracy in assessing
the effects of the litigation rate.

The results here may help identify further assumptions that might be relaxed
by improvements on the Dari-Mattiacci and Saraceno analytical framework.
The computational model particularly illustrates the importance of both the
definition of accuracy and whether a case concerns damages or liability. There
is also room for computational models to improve on the additive evidentiary
signals framework. A direction for future work is to develop models in which
signals of litigation quality are functions of actual litigation quality, rather than
the other way around. Ideally, a model might endogenize the occurrence of
disputes, with the parties receiving signals of case quality.
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